Расчет планетарного редуктора формула

Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями. Отличительной особенностью механизмов, включающих планетарную передачу (или передачи), является наличие двух или более степеней свободы. При этом угловая скорость любого звена передачи определяется угловыми скоростями остальных звеньев.

Наибольшее распространение получила простая одинарная планетарная передача (рис. 1), которая состоит из центрального колеса 1 с наружными зубьями, неподвижного центрального колеса 3 с внутренними зубьями; сателлитов 2 – колес с наружными зубьями, зацепляющихся одновременно с колесами 1 и 3 (на рис. 1 число сателлитов с = 3), и водила Н, на котором закреплены оси сателлитов. Водило соединено с тихоходным валом. В планетарной передаче одно колесо неподвижно (соединено с корпусом). Обычно внешнее центральное колесо с внутренними зубьями называют коронным (коронная шестерня или эпицикл), а внутреннее колесо с внешними зубьями – солнечным колесом (солнечная шестерня или солнце).

При неподвижном колесе 3 вращение колеса 1 вызывает вращение сателлитов 2 относительно собственных осей, а обкатывание сателлитов по колесу 3 перемещает их оси и вращает водило Н. Сателлиты таким образом совершают вращение относительно водила и вместе с водилом вокруг центральной оси, с. е. совершают движение, подобное движению планет. Поэтому такие передачи и называют планетарными.

При неподвижном колесе 3 движение передают чаще всего от колеса 1 к водилу Н, можно передавать движение от водила Н к колесу 1.

В планетарных передачах применяют не только цилиндрические, но и конические колеса с прямым или косым зубом.

Если в планетарной передаче сделать подвижными все звенья, т. е. оба колеса и водило, то такую передачу называют дифференциальной .
С помощью дифференциального механизма можно суммировать движение двух звеньев на одном или раскладывать движение одного звена на два других. Например, в дифференциале заднего моста автомобиля движение от водила Н передают одновременно колесам 1 и 3, что позволяет при повороте одному колесу вращаться быстрее другого.

Разновидности планетарных передач

Существует много различных типов и конструкций планетарных передач. Наиболее широко в машиностроении применяют однорядную планетарную передачу, схема которой показана на рисунке 1. Эта передача конструктивно проста, имеет малые габариты. Находит применение в силовых и вспомогательных приводах. КПД планетарной передачи η = 0,96…0,98 при передаточных числах u = 3…8.

Планетарные механизмы, в составе которых присутствуют одна или несколько планетарных передач подразделяются на однорядные, двухрядные и многорядные. Каждый набор из центральных зубчатых колёс и сателлитов, вращающихся в одной плоскости, образует так называемый планетарный ряд . Простой планетарный механизм с набором одновенцовых сателлитов является однорядным. Простые планетарные механизмы с двухвенцовыми сателлитами являются двухрядными. Сложные планетарные механизмы могут быть двух, трёх, четырёх и даже пятирядными.

Для получения больших передаточных чисел в силовых приводах применяют многоступенчатые планетарные передачи. На рис. 2,а планетарная передача составлена из двух последовательно соединенных однорядных планетарных передач. В этом случае суммарное передаточное число u = u1×u264, а КПД равен η = η1×η2 = 0,92…0,96.

На рисунке 2, б показана схема планетарной передачи с двухрядным (двухвенцовым) сателлитом, для которой при передаче движения от колеса 1 к водилу Н при n4 = 0 передаточное число определяется из зависимостей:

В этой передаче u = 3…19 при КПД η = 0,95…0,97.

Как упоминалось выше, планетарные передачи, у которых все звенья подвижны, называют дифференциальными или просто дифференциалами.

Неизбежные погрешности изготовления приводят к неравномерному распределению нагрузки между сателлитами. Для выравнивания нагрузки в передачах с тремя сателлитами одно из центральных колес выполняют самоустанавливающимся в радиальном направлении (не имеющим радиальных опор). Для самоустановки сателлитов по неподвижному центральному колесу применяют сферические подшипники качения.
Высокие требования предъявляются к прочности и жесткости водила, при этом его масса должна быть минимальной. Обычно водила выполняют литыми или сварными.

Достоинства и недостатки планетарных передач

Основными достоинствами планетарных передач являются:

  • малые габариты и масса вследствие передачи мощности по нескольким потокам, численно равным количеству сателлитов. При этом нагрузка в каждом зацеплении уменьшается в несколько раз;
  • удобство компоновки в машинах благодаря соосности ведущего и ведомого валов;
  • работа с меньшим шумом, чем в обычных зубчатых передачах, что обусловлено меньшими размерами колес и замыканием сил в механизме. При симметричном расположении сателлитов силы в передаче взаимно уравновешиваются;
  • малые нагрузки на валы и опоры, что упрощает конструкцию опор и снижает потери в них;
  • возможность получения больших передаточных чисел при небольшом числе зубчатых колес и малых габаритах передачи.

Не лишены планетарные передачи и недостатков:

  • повышенные требования к точности изготовления и монтажа передачи;
  • большее количество деталей, в т. ч. подшипников, и более сложная сборка.

Область применения планетарных передач

Планетарные передачи применяют как редукторы в силовых передачах и приборах, в коробках передач автомобилей и другой самоходной техники, при этом передаточное число такой КПП может изменяться путем поочередного торможения различных звеньев (например, водила или одного из колес), в дифференциалах автомобилей, тракторов и т. п.

Широкое применение планетарные передачи нашли в автоматических коробках передач автомобилей благодаря удобству управления передаточными числами (переключением передач) и компактности. Можно встретить планетарные передачи и в механизмах привода ведущих колес современных велосипедов. Часто применяют планетарную передачу, совмещенную с электродвигателем (мотор-редуктор, мотор-колесо).

Передаточное число планетарных передач

При определение передаточного числа планетарной передачи используют метод остановки водила ( метод Виллиса ).
По этому методу всей планетарной передаче мысленно сообщается дополнительное вращение с частотой вращения водила nН , но в обратном направлении. При этом водило как бы останавливается, а закрепленное колесо освобождается. Получается так называемый обращенный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны. Сателлиты при этом становятся промежуточными (паразитными) колесами, т. е. колесами, не влияющими на передаточное число всего механизма.
Передаточное число в обращенном механизме определяется как в духступенчатой передаче с одним внешним и вторым внутренним зацеплением.

Здесь существенное значение имеет знак передаточного числа. Передаточное число считают положительным, если в обращенном механизме ведущее и ведомое звенья вращаются в одну сторону, и отрицательным, если в разные стороны. Так, для обращенного механизма передачи по рис. 1 имеем:

Читайте также: Замена прокладки редуктора переднего моста уаз патриот

где z – числа зубьев колес.

В рассматриваемом обращенном механизме знак минус показывает, что колеса 2 и 3 вращаются в обратную сторону по отношению к колесу 1.

В качестве примера определим передаточное число для планетарной передачи, изображенной на рис. 1, при передаче движения от колеса 1 к водилу Н. Мысленная остановка водила в этой передаче равноценна вычитанию его частоты nН из частоты вращения колес.
Тогда для обращенного механизма этой передачи имеем:

Для планетарной передачи, у которой колесо 3 закреплено в корпусе неподвижно ( n3 = 0), колесо 1 является ведущим, а водило Н – ведомым.
Тогда получим передаточное число такой передачи:

Подбор чисел зубьев планетарных передач

В отличие от обычных зубчатых передач расчет планетарных начинают с подбора чисел зубьев на колесах и сателлитах. Рассмотрим последовательность подбора чисел зубьев на примере планетарной передачи, изображенной на рис. 1.

Число зубьев z1 центральной шестерни 1 задают из условия неподрезания ножки зуба: z117. Принимают z1 = 24 при Н350 НВ; z1 = 21 при Н52 HRC и z1 = 17 при Н > 52 HRC.

Число зубьев неподвижного центрального колеса 3 определяют по заданному передаточному числу u :

Число зубьев z2 сателлита 2 вычисляют из условия соосности, в соответствии которым межосевые расстояния aw зубчатых пар с внешним и внутренним зацеплением должны быть равны.
Из рис. 1 для немодифицированной прямозубой передачи:

где d = mz — делительные диаметры колес.

Так как модули зацеплений планетарной передачи одинаковые, то формула (1) принимает вид:

Полученные числа зубьев z1 , z2 , и z3 проверяют по условиям сборки и соседства.

Условие сборки требует, чтобы во всех зацеплениях центральных колес с сателлитами имело место совпадение зубьев со впадинами, в противном случае собрать передачу будет невозможно. Установлено, что при симметричном расположении сателлитов условие сборки удовлетворяется, когда сумма зубьев центральных колес (z1 + z3) кратна числу сателлитов с = 2…6 (обычно с = 3), т. е. должно соблюдаться условие:

Условие соседства требует, чтобы сателлиты не задевали зубьями друг друга. Для этого необходимо, чтобы сумма радиусов вершин зубьев соседних сателлитов, равная da2 = m(z2 + 2 ) , была меньше расстояния l между их осями (рис. 1), т. е.:

Из формулы (2) следует, что условие соседства удовлетворяется, когда

Расчет на прочность планетарных передач

Расчет на прочность зубчатых передач планетарного типа ведут по методике, применяемой для обычных зубчатых передач. Основными критериями работоспособности для большинства планетарных передач (как и для всех зубчатых передач), является усталостная контактная прочность рабочих поверхностей зубьев и прочность зубьев при изгибе. При этом под контактной прочностью понимают способность контактирующих поверхностей зубьев обеспечить требуемую безопасность против прогрессирующего усталостного выкрашивания, а прочностью при изгибе – способность зубьев обеспечить требуемую безопасность против усталостного излома зуба.

Расчет выполняют для каждого зацепления. Например, в передаче, изображенной на рис. 1, необходимо рассчитать внешнее зацепление колес 1 и 2 и внутреннее – колес 2 и 3. Так как модули и силы в этих зацеплениях одинаковы, а внутреннее зацепление по своим свойствам прочнее внешнего, то при одинаковых материалах колес достаточно рассчитать только внешнее зацепление.

Расчет начинают с подбора чисел зубьев колес, как было показано выше.

При определении допускаемых напряжений коэффициенты долговечности находят по эквивалентных числам циклов нагружения. При этом число циклов перемены напряжений зубьев за весь срок службы вычисляют при вращении колес только относительно друг друга.

При определении допускаемых напряжений изгиба для зубьев сателлита вводят коэффициент YA , учитывающий двустороннее приложение нагрузки (симметричный цикл нагружения).

Межосевое расстояние планетарной прямозубой передачи для пары колес внешнего зацепления (центральной шестерни с сателлитом) определяют по формуле:

где u’ = z2/z1 – передаточное число рассчитываемой пары колес;
Кc = 1,05…1,15 – коэффициент неравномерности распределения нагрузки между сателлитами;
Т1 – вращающий момент на валу центральной шестерни, Нм;
с – число сателлитов;
ψba — коэффициент ширины венца колеса:
ψba = 0,4 для Н350 НВ;
ψba = 0,315 при 350 НВ ψba = 0,25 для Н > 50 HRC.

Ширина b3 центрального колеса 3 определяется по формуле b3 = ψbaaw .
Ширину b2 венца сателлита принимают на 2…4 мм больше значения b3 ; ширина центральной шестерни b1 = 1,1 b2 .

Модуль зацепления определяют по формуле:

Получнный расчетом модуль округляют до ближайшего стандартного значения, а затем уточняют межосевое расстояние:

Окружную силу Ft в зацеплении вычисляют по формуле:

Радиальную силу Fr определяют по формуле:

где αw = 20˚ – угол зацепления.

Расчет планетарного редуктора

Обзор механизмов с центральными колесами и водилом. Методика кинематического расчета. Расчет зубчатого зацепления на прочность. Геометрическое определение и конструирование планетарных передач. Нахождение усилий в зацеплении. Подбор подшипников сателлита.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РАСЧЕТ ПЛАНЕТАРНОГО РЕДУКТОРА

Планетарным зубчатым называют механизм, содержащий зубчатые колеса с перемещающимися осями, именуемые сателлитами.

Передача (рис.1) состоит из центрального колеса с наружными зубьями (солнечной шестерни) (1), центрального колеса с внутренними зубьями (3), водила (H) и сателлитов (2). Сателлиты устанавливаются в водило H, ось вращения которого называется основной.

Для краткого обозначения планетарных механизмов широко используются классификационные формулы, в которых указывается число и вид основных звеньев.

Механизмы 2А-h (рис. 1) это планетарные механизмы с одновенцовыми сателлитами, у которых в качестве основных звеньев имеются два центральных колеса и водило.

Рис.1. Кинематическая схема планетарного редуктора: 1- центральное колесо с наружными зубьями; 2- сателлитов; 3- центральное колесо с внутренними зубьями; Н — водило

Спроектировать планетарный редуктор по схеме, показанной на рис. 1.

Момент на выходном валу редуктора Т = 260 н*м.

Передаточное отношение редуктора iр = i1H (3) = 6.

Угловая скорость ведущего вала щ1 = 230 рад/с.

Режим работы — средний нормальный, время работы передачи- t = 10000 ч.

Уравнение для определения числа зубьев редуктора

где — z1 число зубьев солнечной шестерни;

z2-число зубьев сателлитов;

z3— число зубьев центрального колеса с внутренними зубьями;

Принимаем число сателлитов nW = 3, что должно обеспечить получение компактной конструкции и равномерность распределения нагрузки по сателлитам.

Читайте также: Смазка для редуктора champion 250г

i1H (3) — передаточное отношение редуктора.

Обозначение передаточного отношения, связывающего относительные угловые скорости двух звеньев, имеет три индекса: два внизу, соответствующие обозначениям этих звеньев (первый из них относится к звену, угловая скорость которого в числителе), и один вверху, соответствующий звену, относительно которого взяты угловые скорости. Например, запись i1H (3) означает передаточное отношение между звеньями 1(центральным колесом с наружными зубьями) и H (водилом) в движении относительно колеса 3 (центральным колесом с наружными зубьями), которое неподвижно. Передаточное отношение имеет знак плюс, если направления вращения связываемых им звеньев совпадают.

При i1H (3) = 6 уравнение для определения числа зубьев редуктора будет выглядеть

Числа зубьев колес выражаем через z1 — число зубьев центрального колеса:

Подбором (учитывая при этом, что должно соблюдаться неравенство z117) находим, что z1, z4 и г будут целыми числами при

При проектировании планетарных передач следует соблюдать три условия собираемости:

1. Условие соосности валов центральных колес. Для этого в передачах, выполненных без смещения производящего контура, число зубьев колес должно удовлетворять условию

В передачах со смещением производящего исходного контура условие соосности проверяют равенством межосевых расстояний колес:

где Аw12 -межосевое расстояние между сателлитом 2 и солнечным колесом 1;

Аw23 -межосевое расстояние между сателлитом 2 и корончатым колесом 3.

Для этого сумма чисел зубьев колес 3(корончатого) и 1(солнечного) должна быть кратна числу сателлитов:

где nw-число сателлитов; — целое число.

3. Условие соседства. Необходимо, чтобы соседние сателлиты не задевали при вращении зубьями друг друга:

1.2.2 Условие соосности (числа зубьев сателлитов):

z4sin(180 о / nw) — z2[1 + sin(180 о / nw)] = 90 sin60 -36(sin60 +1)= 10,77>2.

При исследовании кинематики планетарных передач широко используют метод остановки водила- метод Виллиса. Всей планетарной передаче мысленно сообщается вращение с частотой вращения водила, но в обратном направлении. При этом водило как бы затормаживается, а все другие звенья освобождаются. Получаем так называемый обращенный механизм, представляющий собой простую передачу, в которой движение передается от 1 к 3 через паразитные колеса 2:

Угловая скорость водила (абсолютная):

Угловая скорость солнечного колеса в относительном движении:

Передаточное отношение между солнечным колесом и сателлитом в относительном движении (при остановленном водиле):

Частота вращения солнечного колеса:

Частота вращения сателлита:

об/мин.


Относительная угловая скорость сателлита:



источники:

https://evakuatorinfo.ru/raschet-planetarnogo-reduktora-formula