Двигатели мотор для робота

Шаг 3. Какие моторы используются для робота.

Моторы для робота

Двигатели для робота входят в состав приводов. Мы узнали о робототехнике в целом на шаге первом. На втором шаге решили, какого робота мы будем делать. Нам нужно установить приводы, которые заставят робота двигаться.

Выбор двигателя для робота напрямую зависит от задач, которые должен выполнять робот. Двигатель (мотор) может входить в состав привода или отдельно быть приводом.

Что такое привод?

Привод может быть определен как устройство, которое преобразует энергию (в робототехнике это, как правило, электрическая энергия) в физические движения.

Подавляющее большинство приводов производят либо вращательное или линейное движение. Например, мотор — это тип привода. Правильный выбор приводов для вашего робота требует понимание того, что приводы доступны. Возможно, немного фантазии, и немного математики и физики.
Приводы вращения — это тип приводов преобразования электрической энергии во вращательное движение.

Двигатель переменного тока

Двигатель переменного тока (AC) редко используется в мобильных роботах. В первую очередь потому, что большинство из них рассчитаны на питание постоянным током (DC) от батареи.

Двигатели мотор для робота

мотор переменного тока AC

Двигатели переменного тока используются в основном в промышленных помещениях , где требуется очень высокий крутящий момент. Прежде всего там, где моторы подключены к электросети.

Двигатели постоянного тока

Двигатели постоянного тока MotorDC моторы имеют разнообразные формы и размеры. Хотя большинство из них цилиндрические. Они имеют выходной вал, который вращается на высоких скоростях, обычно в 5 000 до 10 000 оборотов в минуту. Хотя двигатели постоянного тока очень быстро вращаются, большинство из них не очень мощные. Такие двигатели для робота имеют низкий крутящий момент.

Двигатели мотор для робота

Для того, чтобы снизить скорость и увеличить крутящий момент, могут быть добавлены редукторы. Чтобы установить двигатель на робота, нужно закрепить корпус двигателя на раме робота. По этой причине двигатели для робота часто имеют монтажные отверстия, которые обычно располагаются на лицевой стороне двигателя. Следовательно, они могут быть установлены перпендикулярно к поверхности.

Двигатели постоянного тока могут работать по часовой стрелке (CW) и против вращения часовой стрелки. Угловое движение вала может быть измерено с помощью энкодеров или потенциометров.

Мотор редуктор постоянного тока

Это двигатель постоянного тока в сочетании с коробкой передач. Она работает, чтобы уменьшить скорость двигателя и увеличить крутящий момент. Например, двигатель постоянного тока вращается со скоростью 10000 оборотов в минуту и достигает 0.001 Н*м крутящего момента. Если добавить понижающую передачу 100:1 (сто к одному) мы снизим скорость в 100 раз. В результате 10000 / 100 = 100 об / мин и увеличим крутящий момент в 100 раз (0.001 х 100 = 0.1 Н*м).

Двигатели мотор для робота

мотор редуктор постоянного тока DC

Основные виды понижающих передач это:

  1. зубчатая передача
  2. ременная
  3. планетарная
  4. червячная

Червячная передача позволяет получить очень высокое передаточное число с помощью всего одного этап. И также не дает выходному валу двигаться, если двигатель не работает.

Серводвигатель

Тип используемого вами двигателя зависит от типа движения, которое вы хотите.

R / C или хобби сервомотор

Часто сервомоторы этого типа могут поворачиваться на угол до 180 градусов. Они поворачиваются на определенный угол поворота. И часто используются в более дорогих моделях дистанционного управления средствами для управления или контроля полета.

Теперь они используются в различных приложениях. Цены на эти сервоприводы значительно сократилось, и разнообразие (разные размеры, технологии и сила) увеличилось. Общим фактором для большинства сервоприводов заключается в том, что большинство использует только поворот около 180 градусов.
R / C сервомотор включает в себя двигатель постоянного тока, редуктор, электронику и роторный потенциометр, который и измеряет угол

Электроника и потенциометр работают синхронно, чтобы управлять двигателем и останавливать выходной вал по заданному углу. Эти моторы обычно имеют три провода: земля, напряжение В, и управляющий импульс. Управляющий импульс, как правило, снимается с регулятора мотора сервопривода. Хобби сервомотор — это новый тип сервопривода. Он предполагает непрерывное вращение и обратную связь по положению. Все сервоприводы могут вращаться как вправо, так и влево.

Промышленные серводвигатели

Промышленный серводвигатель с приводом управляется иначе, чем хобби мотор и чаще встречаются на очень больших машинах. Промышленный сервомотор обычно трехфазный и состоит из двигателя переменного тока, редуктора и энкодера. Установленный энкодер обеспечивает обратную связь по угловому положению и скорости.

Двигатели мотор для робота

промышленный сервомотор

Эти моторы редко используются в мобильных роботах из-за их веса, размеров, стоимости и сложности. Вы можете увидеть промышленные серводвигатели на мощный промышленных манипуляторах. Возможно их использование на очень больших роботизированных автомобилях.

Шаговые двигатели

Шаговый двигатель вращается на определенные “ступени” (на самом деле, конкретные градусы). Число ступеней и размер шага зависит от нескольких факторов. Большинство шаговых двигателей не включает в себя передачи. Так как это двигатели постоянного тока и вращающий момент низок.

Правильно настроенный шаговый двигатель может вращаться вправо и влево и может быть установлен в требуемое угловое положение. Есть однополярные и биполярные типы шаговых двигателей. Одним заметным недостатком шаговых двигателей является то, что если мотор не работает, трудно быть уверенным в угле пуска двигателя.

Если добавить передачу, то шаговый двигатель имеет тот же самый эффект, как и добавление передачи на двигатель постоянного тока: Он увеличивает крутящий момент и снижает угловую скорость. Поскольку скорость уменьшается на передаточное отношение, то размер шага также уменьшается на тот же фактор.

Линейные приводы

Линейный привод производит линейное движение (движение вдоль одной прямой линии) и имеют три основные отличительные механические характеристики.

  1. Минимальное и максимальное расстояние, на которое стержень может сдвинуть вал (в мм или дюймах)
  2. Их сила (в кг или фунты)
  3. Их скорость (в м/с или дюйм/с)

DC Линейный Привод

Линейный DC привод часто состоит из двигателя постоянного тока, подключенного к червячной передаче. Когда двигатель вращается, то крепление на винте будет либо ближе или дальше от двигателя. По существу червячная передача преобразует вращательное движение в линейное движение.

Двигатели мотор для робота

линейный привод

Некоторые линейные приводы постоянного тока включают в себя линейный потенциометр, который обеспечивает линейную обратную связь. Для того, чтобы остановить привод от полного разрушения, многие производители включают концевые выключатели на обоих концах. Как правило, для отключения электропитания привода при нажатии на них. Линейные приводы постоянного тока бывают в самых разнообразных размеров и типов.

Соленоиды

Соленоид состоит из катушки намотанной вокруг подвижного сердечника. Когда катушка находится под напряжением, сердечник отталкивается от магнитного поля и производит движения в одном направлении. Несколько катушек или некоторые механические механизмы потребуются для того, чтобы обеспечить движение в двух направлениях.

Соленоиды обычно очень маленькие, но их скорость очень большая. Сила зависит в основном от размера катушки и от того какой силы ток идет через него. Этот тип привода используется в клапанах или системах фиксации. В таких системах, как правило, нет обратной связи по положению (сердечник либо полностью убирается или полностью выдвинут).

Пневматические и гидравлические приводы

Пневматические и гидравлические приводы с помощью воздуха или жидкости (например воды или масла), служат для того чтобы двигаться линейно. Эти типы приводов могут иметь очень длинный ход, большую мощность и высокую скорость.

Двигатели мотор для робота

пневматический или гидравлический привод

Для того чтобы эксплуатироваться они требуют использование жидкости компрессора. Это делает их более сложными в эксплуатации, чем обычные электрические приводы. Они имеют большую мощность, скорости и, как правило, большой размер. И в первую очередь используются в промышленном оборудовании.

Выбор привода

Важно отметить, что постоянно появляются новые и инновационные технологии, и нет ничего постоянного. Также обратите внимание, что один привод может выполнять очень разные задачи в разных условиях. Например, с различной механикой. Привод, который производит линейное движение, может быть использован для поворота объекта и назад (как у автомобильных щеток для очистки стекла).

Роботы с колесами или гусеницами

Приводные двигатели для робота должны перемещать вес всего робота и, скорее всего, потребуется понижающая передача. Большинство роботов используют притормаживание колесами одного борта. В то время как автомобили или грузовики, как правило, используют рулевое управление.

Двигатели мотор для робота

роботизированная платформа на колесах

Если вы выберете бортовой поворот, то DC моторы с редуктором являются идеальным выбором для роботов с колесами или гусеницами. Ведь они обеспечивают непрерывное вращение, и могут иметь необязательную обратную связь по положению с помощью оптических энкодеров. Их очень легко программировать и использовать.

Если вы хотите использовать рулевое управление, то вам понадобится один приводной двигатель и один двигатель, чтобы управлять передними колесами. Поворот ограничен определенным углом и можно применить R / C сервомотор.

Робот манипулятор

Мотор используется, чтобы поднять или повернуть тяжелый вес. Подъем веса требует значительно больше энергии, чем перемещение веса на плоской поверхности. Скорость должна быть принесена в жертву для того, чтобы получить крутящий момент.

Двигатели мотор для робота

робот манипулятор

Поэтому лучше всего использовать редуктор с высоким передаточным отношением и мощный двигатель постоянного тока или линейного привода DC. Можно рассмотреть возможность использования системы (либо червячных передач, или струбцин). Что предотвращает груз от падения в случае потери управления.

Сервоприводы двигателей

Используются если диапазон ограничен до 180 градусов и крутящий момент не является существенным. Р/С мотора сервопривода идеально подходит для таких задач. Серводвигатели предлагаются с различными крутящими моментами и размерами и обеспечивают угловые обратной связи по положению.

Лучше использовать потенциометр, и некоторые специализированные оптические энкодеры. Р/С сервоприводы используются все больше и больше для создания небольших шагающих роботов.

Шаговые двигатели

Используются, когда угол поворота должен быть очень точными. Шаговые двигатели для робота в сочетании с контроллером шагового электродвигателя могут дать очень точное угловое движение. Иногда предпочтительнее серводвигатели, поскольку они обеспечивают непрерывное вращение. Однако, некоторые профессиональные цифровые серводвигатели используют оптические энкодеры. В результате они обладают очень высокой точностью.

Линейные приводы

Линейные приводы являются лучшими для перемещения объектов и расположения их по прямой линии. Они отличаются разнообразием размеров и конфигураций. Для очень быстрого движения можно рассматривать пневматику или соленоиды. Для очень высоких мощностей можно рассматривать линейные приводы постоянного тока и также гидравлику.

Практический пример

  • В уроке 1 мы определили цель нашего проекта, чтобы понять какого типа мобильного робота можно сконструировать при небольшом бюджете.
  • В уроке 2 мы решили, что мы хотели небольшую платформу на колесах. Во-первых, давайте определим тип привода, который потребуется для создания робота.

Для этого нужно ответить на пять вопросов:

  1. Это привод используется для перемещения колесного робота?
    Да. Нужен мотор-редуктор с управлением при помощи притормаживания одного борта. Это означает, что каждое колесо будет нужно оснастить собственным мотором.
  2. Двигатели для робота используются, чтобы поднять или повернуть тяжелый вес?
    Нет, настольная платформа не должна быть тяжелой.
  3. Диапазон движения ограничивается на 180 градусов?
    Нет, колеса могут постоянно вращаться.
  4. Угол должны быть точными?
    Нет, наш робот не требует позиционной обратной связи.
  5. Это движение по прямой?
    Нет, поскольку мы хотим, чтобы робот вращаться и двигаться во всех направлениях.

Большой мотор Lego EV3

Всем этим требованиям соответствует большой мотор из базового набора LEGO MINDSTORMS Education EV3.

Технические характеристики большого мотора EV3

7 популярных приводов для роботов

Привод — это механизм для приведения в действие оборудования по управлению технологическими процессами с использованием электрических, пневматических или гидравлических сигналов. Это важная часть в робототехнике. Приводы, используемые в роботах, влияют на их целесообразность и производительность. Поэтому, в этой статье мы рассмотрим 7 самых распространенных приводов, которыми можно оснастить роботов различного предназначения.

Бесщеточный двигатель постоянного тока

Начнем с электрических двигателей. Бесщеточный или бесколлекторный — это один из типов приводов, набирающих популярность в робототехнике. Как понятно из названия, такой двигатель не использует щетки для коммутации, а вместо этого он коммутируется за счет электроники. Принцип работы данного привода основан на взаимодействии магнитных полей между электромагнитом и постоянным магнитом. Когда катушка находится под напряжением, противоположные полюса ротора и статора притягиваются друг к другу. Эти актуаторы используются практически в любых роботах.

Достоинства БДП следующие:

  • Быстродействие относительно характеристик вращающего момента;
  • Более высокая частота вращения;
  • Высокие динамические характеристики;
  • Длительный срок службы;
  • Бесшумная работа.
  • Сложный и дорогостоящий регулятор скорости;
  • Не работает без электроники.

Синхронный привод

Данный двигатель содержит ротор, который синхронно вращается с колеблющимся полем или током. Синхронные приводы имеют множество преимуществ перед другими двигателями. В первую очередь это относится к энергетическим показателям. Данные приводы используются в выпускаемых промышленных роботах со средней грузоподъемностью и числом степеней подвижности от 3 до 6. Точность позиционирования электрического привода достигает значений до ± 0,05 мм. Их применяют как в позиционном, так и в контурном режимах работы.

Преимущества:

  • Высокая экономичность;
  • Удобство сборки и хорошие регулировочные свойства;
  • Очевидна целесообразность применения синхронного привода для механизмов, не требующих регулирования скорости.
  • Применение синхронного двигателя затруднено, если механизмы обладают большими маховыми массами, где необходимо иметь регулируемый или двойной привод;
  • Не имеет начального пускового момента. Следовательно, для его пуска необходимо разогнать ротор с помощью внешнего момента до частоты вращения, близкой к синхронной.

Асинхронный двигатель

Этот электропривод для преобразования электрической энергии переменного тока в механическую также выгоден по ряду причин. Сам термин «асинхронный» означает не одновременный. При этом имеется ввиду, что у этих двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели от сети переменного тока.
Этот тип двигателя используется в основном для питания ведущих колес автомобиля, поэтому и может найти место в колесной робототехнике. Наличие мощных полупроводников сделало практичным использование более простых асинхронных электродвигателей переменного тока.

Преимущества:

  • Простота и надежность из-за отсутствия коллектора;
  • Низкая стоимость;
  • Значительно низкая масса;
  • Меньшие габариты.
  • Могут перегреваться, особенно под нагрузкой;
  • Невозможность стабильно держать частоту вращения;
  • Относительно небольшой пусковой механизм.

Шаговый двигатель

Шаговый двигатель – привод, в последнее время часто используемый в робототехнике. Основное отличие между ним и всеми остальными типами двигателей состоит в способе вращения. Как известно, перечисленные ранее двигатели вращаются непрерывно. Но шаговые приводы вращаются «шагами». Каждый шаг представляет собой часть полного оборота. Эта часть зависит от механического устройства мотора и от способа управления.

Использование шаговых двигателей является одним из самых простых, дешевых и легких решений для работы систем точного позиционирования. Поэтому эти двигатели очень часто используются в станках с ЧПУ и роботах.

Преимущества:

  • Главное преимущество – точность работы. При подаче потенциалов на обмотки двигатель повернется строго на определенный угол;
  • Низкая стоимость;
  • Подходит для автоматизации отдельных механизмов и систем, где нет необходимости в высокой динамике.
  • Присутствует проблема «проскальзывания» ротора при повышенной нагрузке на вал;
  • Ограничение шагов (максимум 1000 об/мин).

Сервопривод

Это тип электромеханических двигателей, которые не вращаются постоянно, как шаговые, а перемещаются по сигналу в определенное положение и сохраняют его до следующего сигнала. Находят широкое применение в различных секторах робототехники – от самодельных механизмов до сложных андроидов.

В сервоприводах используется механизм обратной связи, позволяющий обрабатывать ошибки и исправлять их в позиционировании. Такая система называется следящей. Если какая-то сила оказывает давление на привод, изменяя его положение, двигатель будет применять силу в противоположном направлении, чтобы исправить возникающую ошибку. Таким образом, достигается высокая точность позиционирования.

Преимущества:

  • Более высокая скорость вращения;
  • Высокая мощность;
  • Позиция механизма всегда на виду и доступна для корректирования.
  • Сложная система подключения и управления;
  • Требует квалифицированного обслуживания;
  • Высокая стоимость.

Пневматический привод

Двигатель, приводящий в движение механизмы через энергию сжатого воздуха. Основной компонент здесь – компрессор. Сжатый компрессором воздух поступает в пневмолинии, и далее к пневмодвигателю. Благодаря отсутствию вязкой среды, такие двигатели могут работать на большей частоте — скорость вращения пневмомотора может достигать десятков тысяч оборотов в минуту.
Этот тип привода все чаще используется в робототехнике, так как имеет низкую плавность хода и точность срабатывания. Наиболее рационально использовать его для механизмов с двумя состояниями – втягивания и выталкивания или закрывания и открывания.

Преимущества:

  • Простота и экономичность;
  • Рабочее тело не ограничено заданным объемом и может пополняться в случае утечки;
  • Вместо компрессора можно использовать баллон со сжатым газом, что упрощает построение пневматической системы;
  • Менее чувствителен к изменениям температуры окружающей среды.
  • Более низкий КПД;
  • Высокая стоимость пневматической энергии по сравнению с электрической;
  • Нагревание и охлаждение рабочего газа в компрессорах, что может привести к возможности обмерзания систем или наоборот конденсации водяных паров из рабочего газа.

Гидравлический привод

Если робот должен работать с грузами более 100кг, следует задуматься об использовании гидравлического привода. Этот тип двигателя для приведения в движения исполнительного органа использует жидкость. Принцип работы гидропривода состоит в насосе, который создает давление рабочей жидкости в напорной магистрали, соединенной с гидродвигателем. Двигатель преобразует давление жидкости в механическое. При этом, регуляторы управляют скоростью и направлением движения гидродвигателя.
Эти приводы применяются в основном в промышленной робототехнике. Но есть случаи их использования и в других прототипах, к примеру, в известном детище DARPA — роботе BigDog.

Преимущества:

  • Небольшие размеры и масса;
  • Высокая производительность — развивает силу в 25 раз выше, чем пневмопривод аналогичного размера;
  • Плавное регулирование силы;
  • Рабочая температура — от -50 до +100С.
  • При высоком давлении возможны утечки жидкости;
  • Высокая стоимость оборудования и обслуживания;
  • Непрерывное потребление энергии;
  • Сложно отслеживать точность работы.

Это были самые основные типы приводов, которые наиболее используются в современной робототехнике.

Источник